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Hn4MARY

A critical cmup~iscm and smmaq is @ven of the various methods
proposed to date for calculating the unit themal conductance on the
outer surface of a heated wing involving both lau!dnarand turbulent
boundary ~ers, and a new equation is suggested which should indicate
the effect of the pressure gyadient on the leminar heat transfer to a
greater degree than do the expressions presented heretofore. For.
purposes of cqison the different equations are applied to a Joukowski” ‘“-“-”-“-
profile for which the neoessq data are aocum.tely known and the results
are plotted graphically. The unit thermal conductance in the I.aminar

. and turbulent reg3mes ccquted by the tifferent methods are found to be
in good ~ement. A procedure whereby the equations for heat transfer
frcm airfoil surfaces may be applied to a propeller shape is presented
by means of an illustrative exsmple.

INTRODUCTION

ice
and

In the design of heating systems for wings for the purpose of thermal
prevention a knowledge of the unit themnal conductance on the inner
outer surfaces of the wing is necessary. The internal conductsmce
probably a somewhat greater effeot on the value of the ove&all heat

.—
-..-—

transfer but the value of the external conductance is presumably the
controlling factor in the case of the distribution of temperature along
the wing. The external conductance is a function of many variables

-.

depending upon the form of the themal and fluid lxxznda~ layers existing
at the airfoil surface. This report willbe concerned sole3y with methods “-
of calculating this latter unit themal conductance. Excellent swnmaries
of the general problems
are given in references

involved in the design of wing heating systems
I to 6.
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.
Five general procedures~ have been suggested in the literature for

ccmputing the heat transfer into laminar boundary layers for incompressible
flow along airfoil surfaces and four methods have been proposed for the

.

turbulent regime. These are discussed in turn. In conclusion a new
method, which is scinewhatmore ccanplexthan those previously published,is
presented for the laminar regime and is intended to represent more nearly
the aerodynamic and thermal conditions along a wing section. All the
methods discussed treat the laminar and turbulent boundary layers separately,
and to date no accurate”nieansof locating t@ transition Doint has been
evolved.
practice
point of
the case

The
upon one

Instead of an accurat’especifl”;ationof this.~o~nt, current
favors the assumption that transition occurs at, or near, the
minimum pressure. This criterion is of course inapplicable for
of “laminar wings.”

methods of calculation described in this report are each based
of four general principles (or simple modifications thereot).

These are:
—

For the I.aminarregime:

(1) “Reynolds analogy” which states the equivalence of the
equations for manentum and heat transfer at Prandtl modulus equal to 1
and in the absence of a pressure gradient. . .

(2) Pohlhausenss exact solutlon of the differential equations ,
for heat transfer in a I..aminarboundary layer along a flat plate for
any value of the Prandtl modulus. Also, Colburnts equation for heat .

transfer along a flat phte based upon Pohl.hausen*sexact solution. .

(.3) The postu~te t~t the tewerature andveloclty distributions
In the boundary layer are
being calculated by means
(Squirets method).

(k) An integral heat

For the turbulent regime:

(1) Reynolds analogy

proportio&l, the factor of proportionality
of a heat balance on the boundary layer

balance over the lsminar boundary layer.

—

(2) K&m&Qs modification of Reynolds analogy

(3) CO~bU~’S eqmtion for turbulent heat transfer along a
flat plate which is identical with the equations obtained frcm
Reynolds analogy, except that the effect of the variation in the
Prandtl modulus fram unity is approximately accounted for

.

%he paper presented by A. !?.Tifford (A.S.M.E. Aviation Meeting,
LOS Angel-es,Jude 1944) was not received before tilj.s report was written. ●
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(4) An integral heat balsmce over the

The methods.of analysis summsxized b

3

turbulent boundary layer

this renort also illustrate
several approximate procedures for.indicating the affect of the

...-

pressure gradient existing over au airfoil surface upon the heat
trsnsfer into the boundary layer. For purposes of comparison these ““ - -
procedures may be listed under four maiq headings: .

...—
.- —— -—

(A)

(B)

(c)

(D)

Substitution of the velocity near the airfoil surface
(calculated by mesns of the pressure distributions about
the airfoil; see appemdix B) into flat–plate equatims and
the substitution of approximate ?hagnitudesof the local drag

coefficient
~-don (%!Y=J

along the airfoil surface

into heat–transfer equations dertved from a consideration of
flow over a f~at plate

Substitution of the velocity near the airfoil surface
(calculated by means of the pressure distribution about the
airfoil, see appendix B) into Colburn’s empirical heat-
transfer equations for a flat plate

Heat balence on the boundary layer, includigg the effect of
pressure gradient on the velocity distribution with the

—.—

further postulate that the temperature distribution is
proportional to the velocity distribution

Heat balsnce on the boundary layer solving the heat trensfer
end hydrodynamic equations simultaneously

With these classifications the methods described hereti may
be tabulated as follows:



!=

I LAMmm

Pohl.hsusen
Ao flat-plate

Solut ion

Analy- Colbu?n

Methcd tical equation

*

MartinelLi
B

and others

c

D

A

TuRBUImT

A

B

c

The material in this re~ort la divided into two sectione; the first sectlcn describes the

methcds for calculations h &a Imainar regime and the seccmd-secthn describes the methods for

turbulent regime.
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W. G. Young durl~ the preparation of this report.
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SYMBOLS

area of airfoil equal to chord times span, squere feet

thermal diffusivity of fluid
()36c&7 ‘

drag coefficient
( )

1< pAum2‘D=2f

lift coefficient
( )
FL = $@Um2

heat capacity of fluid at constant

wing chord, feet

(sq ft)/(see)

pressure, Btu/(1%)(%’)

diameter of equivalent cylinder, feet

average unit thermal convective conductance, for le h L,
between airfoil surface and air, TBtu/(hr)(sqft) OF)

local or point unit
foil surface end

local or point unit
foil surface end

dxag force, pounds

lift force, pounds

thermal convective conductance between air-
afr at any point x, Btu/(hr)(sqft)(OF)

thergel convective conductance between air-
air at eay =gle p, Btu/(hr)(sq ft)(OF)

mechanical equlmlent of heat (778) , (ft.-lb )@tu

the- conductivity of fltid, Btu/(hr)(sqft)(OF/ft)

Nusselt modulus

pressure, (lb)/(sqft)

heat transferred at eny poln.t x, Btu/(hr)

ideal gas constant, (ft+b )/(lb)(%)

()
Reyuolds m~ulus based on wing chord ‘~

Reyuolti modulus based on cylinder diemeter
()

Q
v

()

u>
Reynolds modulus based on length x —

v



temperature of fluid in

temperature of fluid at

temperature of fluid in

temperature of surface,
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bOtmwy lay-, ~

edge of boundary layer, % -
.

—. .—

free stream, % “---

%

velocity of fluid near airfoil surface in x-direction cdculatd

“*3s (ft)/(see)from Bernoulli*s equatia, ~ = -

velocity of fluid h

velocity of fluid in

velocity of fluid in

length along airfoil
feet

boundary layer in x-directiml, (ft)/(see)

free streqm in.x+iirection, (ft)/(see)

boundary l*er- in y-direction, (ft)/(see)

profile measured from point of stagnaticm,

distance normal to airfoil surface, feet

eagle of attack of airfoil, degree
.

()

62 du
dimensionless parameter in Pohlhausen solution — —

Vax .

thickness of leminar bountiy layer, feet

thiclmess of thermal boundary layer, fee%

displacement thickness of hy&odynamic boundary layer

(l?l’-E)Q)’f’=e. ~~ ~

displacement thictiess of thermal boundary layer

(Jm(&J@)Jfeet -

‘characteristiclength” in turbulent boudary layer, feet

engle between radius through point on cylinder and radius
through point of stagnation measured at-@s of cylinder
de~ee; also ~ctions definea}y eq~tion: (40) ‘d (4?~_ , _

.

.



.

.

No. 1453

absolute viscosity of fluid, (lb)(sec)/(sq ft)

kinematic visoosity of fluid, (sq ft)/(see)

weight density of fluid, (lb)/(ft3)

mass density of fluid (7/g), (l~)(sec2)/(ft4)

.-

7

momentum thicbess of boundazg layer

a dimensionless quantity (~)&
TO J

‘teddyviscosity” defined by the equation ~ =6-,
P w

(lb)(sec)/(sq ft)

drag at

Prandtl

8

the surface, (lb)/(sq i%)

(3’0?’)
modulus ,-

DISCUSSION OF METHO~

LeznlnarRegime

The first part of this section.consists of a generalized discussion
of the theory for the calculation of heat flow into laminsr boundary layers.
The details of five methods are then stated at the end of the section.

(1) Reynolds analogy.–With the usugl postulates of bouqdery-layer
theory (see appendix B), the hydrodynamic equation for steady two-

-.

&bnensional flow in a laminar boundary layer in the absence of a pressure
gradient2 is (reference 7, vol. 1, ch. IV)

au au .32.1.
‘Si+vs=vp (1)

The equation for the temperature distribution in such a boundazy layer is
(referenoe 7, vol. II, p. 61o)

2A flat plate oriented in the direction in which the fluid is flowing
will.satisfy the requirements of equation (l). {pee appendix B.)
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(2)

.

.

When the velocity emd temperature of equations (1) and (2) are expressed
in dimensionless fom by dlvidlng, respectively, by k the velocity of

the free stream (in the ease of a flat plate the velooity in the free
stresm is equal to the velooity at the edge of the bowndmy ~er) end
byz!3=To -&, the difference in temperature between the surfaoe and

the free strean, there is obtained “

(s) .

and

*U

Inepection of eqwtions
equations have the ssme

equat1ons are identical

ax””ay I& by2

(3) =d (4) reveals that
boundary conditions, the

( )
that is, ~ = & and

u=
velocity distributions are exaotly s~ti---

If the solutions are identical, then

[$)] .p(ij)]
y=o y=o

or

—

(4)

ifl?r= 2 and if both
solutions of the two

thus the temperature and

.

.

—

(5)

(6)

.._

This fundaenta~ relation expresses the well-known Reynolds smalogy
whith states that there exists a direct relation between the temyefiture
and velocity gradients, whioh rewpectively control the ‘rate of heat transfer -
and the drs@ (fihear) at each point on the surface of a flat plate losinq
heat to a stream of fluid.

.
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Sime

(7)

(Ta)

equation (6) ~ be written as

Sime in the derivation of equation (8), ~ was postulated to be equal
to uni~, the equation should %e written as

It cannot be overemphasized that equations (6) and (9) are valid
only if eaoh of’the two fundemsn-bl conditions upon whioh they are based

apis satisfied, nenely that ~ = O, and Pr = 1. If the pressure gradient

along the surfaoe is not zero, equation (1) no longer desuribes the
velocity in the boundaq layer but a term involving the pressure gradient
must be added. That is, for laminar bourdary-layer flow over a surface
other than a flat plate, the hydrodynamic equation is

(lo)

instead of equation (1), and the dimensionless equations for the velooity
and temperature will no longer be identioal. Reference to equations (3)
and (4) indioates cleb.rlyalao that unless Pr = 1, the equations will no
longer be identioal.

A shulteneous solution of equaticms (10) and (2)’is difficult except

ap with x (referenoe 7, vol. II,for certain special variations of ~

pp. 63L635) (appendix B). These special ciaaesindioate, however, that sn
appz*~33natecorrection for the pressure gradient existing along the
airfoil smXaoe me# be made by
.
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(a)

(b)

Thus the
gradient

the
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Substituting U, the %’elooi@ near the airfoil surfaoe
(oalouhted fran the pzwssure distribution about the airfoil)
for u= in the Reynolds analogy I

Substituting the 100al drag ooeffioient along the airfoil

()‘b=eda %$yuo
along the aitioll) for the flat-plate

drag ooeffioi.entrequired by the Reynolds emalogy

Reynolds analogy moiM.fledapproximately to aooount for pressure
is

(U)

.

(2) Pohlhe.usensolwtion.- po~us-en (reference 8) has solved equaticms (1]
(2) stiltaneously for magnitudes of Pr other than unitY by substitutixu?
Bl&ius series soiution

temperature distribution in
His solution ~ be written

f=r the velooIty in equation (2)-to-obtain the -
lnjer alonfj a flat plate.

(To - Tm) (12) ‘-

.

Sinoe the Blasius solution for the velooity distributicm in a laminar
.

boundaw layer along a fht plate is (refe-nnoe 7, vol. 1, p. 135)

(13)

the ratio of the temperature gradient at the wall to the velooity gradient
now becames

69~ . prl/3 (Tc) - ‘h)

($)
(14)

au %
y=o

When this exp&ssion is ocmpared with,equation (6) it is noted that the
Pohlhausen solution yields the some results as the Reynolds analogy
except for the ino lusion of the term involviw the I&andt 1 modulus. Thus,
equation (14 ) mW be uti14zed to caloulate heat lo~ses from a flat plate
for niagnitudes of the Prandtl modulus diff%g?~ngft’ciuunity. The conditicm
that the pressure &g?adientalong the plate is zero mv.ststill be fulfilled
huwever, and equation (14) i= again strictly valid only for a fI.&tplate.

—

.

.

—
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before, equation (14) ~ be

U

rearranged, for

()
C.fp%z

TO=V
%Ya’ ‘2

and.

f k aT
()Cx=— —

TO - % “~Y y~

Thus by substitution into eqyaticm (14)

fc ,. #/3 - %
3600YCpUm 2

.
—

(15)

Colbum has demonstrated that equation (15) satisfactorily c orrela.tes
e~erimental data for the heat loss frcm a flat plate.

By the use of the equation for the local dmg coefficient along a
flat plate (reference 7, vol. I, p. 135)

Cfx
4.2= O.332Rex (16) “

Equation (15) x be rewritten aa

fc -0.5w213 . 0.332N3X
3600YCP%

where

up
Rex = —

Wg

Equation (15) ~ be modified aa before for application
the substitution of U for u= and the calculation of
coefficient for the airfoil. Thus equation (15) becanes

(17)

to airfoils by
the local bg

fCx ‘ .-

360-OYCPU :+ .(m)
——
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Equation (17) may also be modified for applloation to airfoils by the
substitution of U for ~. The correction for, differences in the 100al -
drag between the &irfoil @ the flat plate is not aoo ounted for, however.
Thus

f. -0.5p#h = 0. 33-%
Y5007cpu

(19)
—

Equation”( 19) is tenued the Colbum laminar equation in this report.

(3) Proportionality between velocity end t emperature di stribut ions. -
~ it is postulated that the temperature distribution is everywhere
proportimsl to the velocity distribution, then ——

If, in addition, the ratio ~ is expressed as a lmown fumtion of the
u

parameter ~ where 51 is the hydrodynamic~oundary-~er thickness,
%

that is,

then frcm the similariW of the temperature @ velooity profiles

where f is the mme funotion as in the hydrodynamic case and 6? is the
thiokness of the themal boundazy layer. The prohlexu of determining the
temperature distribution then reduces to one of expressing ~ in tez?ns

62
of the known value of 81. The ratio — Is in general a funotion of both51
the Prandtl modulus and the pressure distribution and reduces to unity
only in the case of heat transfer fran a flat plate at Pr = 1. Squirefs
contribution oonsists in deriving this funo tional relation by means of the
energy balanoe described in the following seotim.

(4) Heat balance.– When sn Incompressible fluid is considered end the -
“dissipation” effect i~ neglooted, an ener~ balanoe’~ be nade aoross a- ‘–
seotion of the boundary layer of width d% at a point x, (see fig. 1)
as

to

folluws. The sin--t of-excess heat being cm”~ed across a no-

1

al
-.

the surface at x is Cyy u(T - T.) W and the difference
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between the value of
must be equal to the

that is, -k
r)T@*

this expression at x + dx
emount of heat entering the

13

and the value at x
fluid fram the surfao e,

For unifozm density and zero dissipation, the ener~

If u and T are Imown, the point unit conductance along w
surface as a function of y is then given by

(18a)

(19a)

It should be noted that, in general, principles (1) and (2) are based
on a IawWedge of the velocity gradient at the surrtace or the body, whereas
prirwiple (3) reqyiYes that * veloci~ gz=adient at the wall as well as
the velocity distribution be kxwn. Princi@ (4) reqtires the lamwledge
of both the tempem.ture smd.veloui& distributions in the leminar boq
layer but does not require au exaot lmowledge of the velocity and temperature
gradients at the wall.

for
are

the

B the following
—

paragraphs several methoti which have been proposed
the calculation of ~Imundaq-Uyer unit uonduatance along wings
acmqpred.

&th cd of Allen and Look. - A1.len and Iook (reference 9) treat only
case of heat transfer into lsminar boundary layers, basing the

derivation upon Repolds amalo~ as expressed by eq~~ation(U),
●

f ~
.%

3600f12U 2

or
I

fC = ~f=~u x 3600
x

In order to evaluate the local drag coefficient Cfx, the BJ..asius

&pe velocity profile, which represent the solution of the differential
equation for flow in an in~anpressible boundary layer along a flat plate
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(with zero pressure gradient), is ‘postulated by the authors to apply over
the entire airfoZ1. In tenne of the lsmi~om-lq?efi~thiclmess 5,
the local drag coefficient along a flat plate beccsnes

.

-.

Cfx = 2(o.765)pq
yU8

(20)

When equation (20) is substituted in equatlcm (U.) and rearranged,
the following equation is obtained

~ .0.765 (3607)= o.7,,Pr

or

fcx =

beoause the Prandtl modulus was
eqyation (1.1).

0.765 ~ . m
8 8

(21)

assumed to be unity.in order to obtain
.

Equation (21) euggeste that heat is c ondv.cted through the boundary
layer by conduction aoross the thickness 8. PITPicaldy this is not
the ease; heat is transferred into the boundary layer and carried within

.

the boun&&y ~er along the surface of the plate. No heat is tram ferred
to the free air stream by transfer across the boundary layer.

In order to aocount approximately for the effect of the pressure
gradient existing about the airfoil, the thickness of the laminar boundary
layer 5 is computed by substituting the Blasius distribution in the
von X&&n manentum condition and integrating. This opemtion yields an ,
equation for 82 of the fozm (reference 10)

82 = 5*3C2
Rec (22) .-

Equation (22) for the boundary-@er thickness represents the point
in the derivation of M&n and Look where the treatment differs fran the
case of heat transfer in a laminar boundaxy @yer along a flat plate.

‘3The thiclmess of the Muinarbo_ ~er 5 is arbitrarily defined

.

as the distance
layer where the
boundam ~er.

fram the solid-fluid interface to a point in the boundary

-C PrSSSUZW iS ~haJf of.fts value outside tie
(See appendix B)

T—
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Although the Blasius velocity profile which is only applicable to conditions

(
apof flow along a flat plate that is, -?& = o )

has been used, substitution

of the equation for the B1.asius velocity profile into the momentumequation
containing a t-mm involving the pressure gmdient should yield a value of 5
more nearly representative of conditions at the sursace of an airfoil.

Combination of eqwations (21) and (22) yields the final equation:

fc‘[l-00332 r“(#”l’ *) ‘1/2 (23)

@%y” d% (JIJ”’’(:)

The equation is written in this manner to allow ready caparison with
flat-plate heaktransfer equations. The I?randtl modulus does not appear
in equation (23) because it was initia13y postulated to be unity.

Method of Frick and M@ullough.- The methd OF I&ick and McCullough
(reference 11) for treating the heat t~:er throu@3 laminar boundary
~ers is similar to that of Allen and Look but is generalized to include
values of Pr other than unity by utilizing PohlhausenYs exact solution
of the differential equations >or-heat
Qyer along a flat plate.

As discussed in the introduction,
expression:

trander in a leminar boundaq

the Pohlhausen solution yields the

As in the method of Allen and Look the velocie gradient at the wall is =
derived z%atnthe Blasius solution for a flat p--te for the condition that

aty =8,
: = 0“707”

(See footnote 3.)

Thus

therefore

(24) ‘

— ——.

(25)
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or, for a magnitude4 of
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.

= fcx(To - T~ = 0.765 ~ *(TO – TJ (26)

Pr = 0.760

f Cx = a.7oog

where 5, as in the Allen and Look nport,

(27)

is given by equation (22).
The substitutiaa of this value of 5 then X3Y accounts for the flow
conditions along surfaces other than flat ones.

The difference between the ‘coefficient 0.700 as found by Frick and
MOullough and the value of 0.765 found by Allen and Look arises from
the presence of the oube root of Pr in equation (26).

In general, for other ma@itudes of Pir, by substitution of
equation (22) into equation (26)

.
(28)

Basically this solution is identical to that of Allen and Iaok, with the
exception of the use of the Pohlhausen solution instead of the Reynolds
solution for heat transfer frcm a heated plate.

.
-o~–o$=imu~ Boelter, and others.- @obably the simplest——

approximate method of cauputing the point unit thexmal conductance of
—

the laminarbounda~ ~er over wings is that of MartiiieJ.li.,Guibertj
Morrin, and Boelter (referenoe 13). The aitioil surface is oonceived
as a combination of a cylinder close to the lead3.ngedge and a flat plate
beyond; the known data and equations for the heat transfer from these
surfaces are then app~ed to the ideal surfaces.

(a) Near stagnation point

For the magnitude of the unit thezmal conductance at the
sta~tion point of a cylinder, Squire~s analytical solution of the

4A summary of data (reference 12) revesls that the yalue of ~
for the temperatures usually encountered in ting anti-icing is closer to
0.72. A magnitude of Pr = 0.72 is thus utilized in all ls.minarairfoil
calculations in the present report.
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differential equations for the bounda~ leyer (reference 7, vol. II,
p. 631) yields

(29)

The point conduc-ce along the leading edge at any angle (up to about
q = 90°) measured from the stagnation point (reference 14) can then be
approximated by the equation

fcqD
—=
k [()]

1.14Pr0”4R~0”5 1- & 3

or if the properties
absolute temperature

(b).

of air are expressed by a
T

power function in the

f= = 0.194T0-49 (~
Q )[’-(%s]

Remainder of wing (lsminar flow)

(30)

(31) ‘

For the heat t~fer along the portion of the airfoil section
considered to behave as a flat plate, the equation of Colburnwhich iS

. based upon Pohlhausenrs analytical solution iS used,-(reference 15)

fcx (Pr)2’3=0.33~?ex4”5
36CWPYU

(19)

where U is the velocity near the airfoil surface at the point x,
creputed frcm the pressure distribution existing about the airfoi1.
(See appendix B.) The coordinate x Is measured frcm the stagnation
point. When the properties of air are expressed as a function of
temperature -—

f ()UJ 0.50
= o. 0562ro ● 50 ~

Cx

For comparison with the previous two methods, equation (19) may be
written aa

(32)

(33) “--
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The heat-transfer equation (3,0) used in MartineKli is method for
calculating the point c onductame near the forward stagnation point is
obtained from amdysis and data on heat transfer near the stagnation
point of a cylinder. The equations used beyond the leading edge in the
method are, of oourse, purdy fla&plate relations, but the substitution
of the actual velocity U at the edge of the boundary l&er for Um is
intended to account apprc@mateW for the effect of the pressure
distribution along an airfoi 1 surface. -.

Method of Squire.- The procedure adopted by Squire (reference 16)
for the calculation of the point unit thermal conductance over the outer
surface of an airfoil involves more lengthy ccmputa.tionX any of the
preceding methods, but probably represents the most ~tional analysis of
the aerodynamic and thermal relations thus f= puh~shed.

It can be shown that when the Peclet modulus (u&/a) is large, the
conditions with respect to the temperature Mstribu’tion near the surfao e of
a heated body past which fluid is flowing are the same as those with
respect to the velocity distribution when the Reynolds modulus is large.
That is, a “thermal boundary @er” of small thiclmess exists near the
surface, in which the temperature falls rapidly &om its value at the
surface to the temperature In the free stream. Thus it follows to define
a “thezmal displacement thickness” 52 for the themal %oundary layer
in a manner analogous to the hy&oQynsmio case, (appendix-B) by the
equation,

. —

.

(34)

in which T, To, sad T. are the temperatures in the b~ layer, at
the surface, ami in the free stream, respectively.

In Squiress derivation au Igrpothesis of flvndemental importance is
made; namely that the temperature distribution is of a similar fozm to
that of velocity. It should be clearly borne in mind that when this
postulate is made it is assuned that the pressure gradient affeots the
tempeza.ture distribution in exactly the same msmer as it does the velooi.ty
distribution. This is not strictly correct, and the acc~y of the
approximateion is still open to e~erhnental veri~fioati on, (See appendix C.)

With this hypothesis, utilizing the BbSIUS series solution for the
velocity distribution in the leminar lJoun@q @yer of a flat plate, thefi
iS obtained —

(35)

.



NACA ~~Oc 1453

0??

.19

The equation for the bydrodymmic-boundsry-~er dis~lacsmsnt
thldness (appendix B) - be written as (referenoe 17)

so that

or

(36)

(37)

(38)

(39)

al
The ratio —

62
appearing in equation (39] is a funotion of U and

Pr and was obtained by Squire by mesms of the inbe~l heat balanoe
derived In sectim entitled “Heat balanoe.” When the Blasius distribution
for velooity and temperature is substituted in this heat balance 62 w
be expressed in terms of the Iumwnvalue of 51 by the zwlat5cm

(40)
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known function of its

between 0.5 and 2.0.
6.

argument which Squire tabulates for

If ths pressure gz%dients are not too -

large, the ratio ~ vezy nearly equals
43 ●

& —. .“

It is important that one recognize wherein Squirets method is sid lar
to the approach used by Look and Allen, Frick smd McCullough, and Msrtinelli
and in what way it d3ffers from these. It will be recalded that in the
latter three methods the authors use the hytiodynsmic equations and
heat-transfer equations for a flat plate and include the effect of the
pressure gradient only in canputing the value of the boundary-layer thickness,
which appears in their final equations for the local unit themal conductam e,
and by substituting the actual velocity at the edge of the boundazy layer.
Althou@ It is true that Squire also used the flow d heal+tramsfer
equations which al?evalid only for a flat plate, his method represents
an advance in that it uses a coriwcted value of the thezmal-boundary-~er
thickness ccanputedas a flznctionof the hydrciQ~c-bounda,ry-layer
thiclmess in the final equation for fcx.

Method of this Z’SPOI%.- It yin be .note_dthat each of the preceding
methods involves a cauprcmise or canbination of l@ro@nemic and heat-
transfer equations which m strict3y applicable only in the case of
boundary ~ers along plane surfaces, together with the mcxuentumequation
whith is valid for any curved surface up to the point of separation, to
yield final expressions for the tit themnal conductsmce over en airfoil
shape.

The authors of the present report have attempted an analysis of the
problem based on relations true for arw bo~mdarJ ~er regardless of the
shape of the section and without recoursie-to the Blasius fI.a+plate
solution.

Two such general expressions are available: one being merely an
integrated heat balance across the bom Qyer, am.the other an
inte~ted force balance.- If one postulates-steady flow, an incompressible
fluid, emd no dissipation OY kinetic energy, the first~-often called the
“energy equation” of the boundam~”layer, is

-..-

and the second is the well-known von K&&n rnncntum equation (appendix B) -
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appendix A.)

~ .)(:)+ (-2

When a fourth power polynanial is postulated to represent both the
vela ity and tempe~ture distribution in the boundaxy layer, the
following equatioriis obtained with the use of’the proper b~
conditions. (See

u

(
-=2+
u

where “

Equation (41) ~ be written in the folluwing form:

which, upon substitution of the poxala for the velocity and
temperature distribution and integrating, yields

(4),)

(),5)

(46)

9= [(4.134 – 0.011J.)Pr-1/3+ (0.021 - 0.006~)pr-1

-4/3+ (-0.006 + 0.00IA)Pr J . .(47)

and -.

~H ~ .#3
8 (See appendix A.)
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Therefon

.

fcx= 36007cp& (m@) (49)

Details of the method of derivation and the prooedure for oaloulating
the point oonduotanoe in this methti will be f= in appendix A.

It was plmvlously pointed out that Squire Ts method represented a
oloser oorrespondenoe to physical. faots than those previously proposed
in that a geneti energy balanoe on the boundaqy ~er was used to
oal.oulate the ratio of the thermah to the l@rodynsmio-b~-~er
thlolmess. The method does, however, employ the Blasiue series solution
for the flat plate to represent the veloot+g distribution in the boundary
@cr. In the aforementioned method this latter approximation is
eliminated by using both flui&flow and heat-transfer equations whloh are
gene=l for the laminar boundaq ~er along any type of section and which
take into amount the pressure distribution ao5ually existing over the
airfoil surfaoe. Specifically, the PohJWuzaen polynomial is used In
preference to the Blasius series to represent the velooity distribution
in the boundary 4yer.

In so doing, the Mmltatims of the Pohlhausen method should be
olearly borne in mind (appendix B). It Is gene- conoeded that this
methti gives a good representation of the velooiW distribution in a
Mminar boundaqy ~er in whloh the fluid is being amelenated and is
fairly aocmrate in regions of retamled flow at positions distant f ran
the point of separatia. The method becanes less and. less aocurate as
the point of separation is approached sad brealm down ocmpletedy upon
reaohing that point.

sunmtaq of methods .- The final equations for the leminar point
unit thermal conduotemoe for eaoh of the fmu mdhods ‘prevloue~
published are as follows:

Allen ad Look:

Friuk and

fcx ~ 0.332

3600CP7U ~

McCullough:

fox 0.332 _-2/3—= —
@ocp7u WX

-1/2

(23)

(28)

.

.
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Martind.li and

Squire:

others:

‘c’ .~(;Q(r:y*360CCPYU

23

(33)

a

(39)

Ccznparison ok equations (23), (28), (33), and (39) reveals that:

(1) Equations (28), (33), and (39) aocount ~or variations of Pr
frun unity, but equation (23) does not.

(2) All four equations aocount approx-tely for the pressure gradient
existing along the airfoil by substituting the velooity at the e~e of
lsminar bounda~ layer for u. In flat-plate relati~s but, h additia,
equations (23), (28), end (39) make fizrtherapproximate corrections by
means of the temns in b=kets.

over
frca

flow

(3) JMmtim (28) and (33) are identical for the case of heat transfer
plane surfaoes, and all the equations are identical for heat transfer
aflat plateat Pr=l.

The next section of this report is devoted to a discussion of heat
into turbulent boundam 4vers. A generalized discussion of theorv

is followed by details of f-m ~alculati& procedures.
.“

Turbulent Regime

l&plorattons of the velwity immediately ad~acent to streamlined
surfaoes along which a turbulent b~ ~er exists ~e, not numerous,
but measurements of the vplocity near the walls of tubes in which a fluid
is flowing turbulently have been accurately perfozmed (references 18 to 20)
and re~eal that a ccm@etely turbulent boundary @er probably does not
exist. Near the walls of the tube there is found to be a laminar “sublayer”
in which the flow remains viseous even though the fluid far from the surface
flows turbulently. For purposes of analysis a transition layer, scmetimes

. called the ‘bLIff’erlayer” ~ ke visualized as existing between this
laminar sub~er and the turbulent fluid. In the laminar sub~er viscous
fore es predominate; in the turbulent region “eddyvr forces are controlling;
whereas in the lnu?fer layer both vise ous and eddy fozv es are of the sane
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order of magnitude. Reynolds (referenoe 21) postulated that in the
turbulent region, mcmentum and heat are transferred by similar mechanisms.
In the laminar sub~er, molecular heat transfer oocurs, whereas in the

.

buffer layer both moleoular and “eddy” heat transfer take place.

On the basis of these concepts, a boq-layer heabtranefer
eq-tton and a bound=y-layer hydrodynamic equation have been written
(reference 7, VOL. II, p. 650). The hea%transfer equation is

where ~H is the so-oalled “eddy diff%aivity” for heat.

The hydrodynamic equation is

(m)

(51)

where GM is the s~alled eddy diffusivity for mcmentum. The velooities

u and v in equations (50) and (51) are mean values with respect to time.

On the basis of the mcsnentum-transfertheog exaot-similarity between
the temperature end velooity distributions therefore exists if .

(1)

(2)

(3)

The eddy diffusivi~ for heat CH equals the eddy diffusi.vity

fOr m~nt~ CM. (This statement is the original basis for the

Reynolds analog as developed by Stanton (referenoe 22).)

The Prandtl modulus equals uni@. (This statement is necess~
beoause of the existenoe of the laminar sub~er and buffer ~er,
in which VISCOUS stresses and molecular heat transfer are important.)

The pressure gradient & is .~ro.

If all these conditions are satisfied and if the temperature end velocity
distributions have the same boundaqy conditions,tthe solutions for velooity
and temperature will.be identical. Thus, for turbulent fluw, as in the
csae of lsminar flow:

(52) 4-

.
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As in the c-e of a laminar boundary leyer, this equation oan be rewritten
as: .

or since Pr = 1

f-cx cf~

360ccp7um = y

(53)

. (54)

This,equation is usua13Y referred to as Reynolds .snalogyend, as

written, applies only to heat tr~fer from plates
($!!= “) at a unifozm

temperature to a fluid tith X& = 1. Modificatims of the snalogy to
apply for other ma~tudes of Pr and for flow condltions in which a
pressure gradient exists will be discussed below.

Modification of Reynolds analogy to account for pressure gradient ~hp.- If

the pressure gradient
s

is not zero, then equations (50) and (51) are no

longer emalogous and the exact equivalence of
breaks down.

Calculations for an airfoil on the basis
the temperature and veloclty distributions in
sre assumed to wxcv identical& with m~ssure

U sad T, even for Pr = l.,

of a heat balance in which
the turbulent boundixq ~er
~dient (reference 16)

reveal that the pressure gradient ~ have a large effect on the rate of
heat transfer. The calculations presented in referente 16, however, ‘

ap
probably overemphasize the effect of ~ because =tua~, the pressure

gradient influences the velociiqymuch more then it does the temperature,

as noted by the fact that the temu
%

enters the velccity equation

directly, but influences the temperature only through lts effect on the
velocities u and v.

Thus the exact influence of ~ on the rate of heat transfer is

difficult to establish; one may probably sw that the effeet should not
be pronounced, but rather of seconde.zyimportance. For lack of a
simultaneous solution of the heat-transfer and hydrodynamic ~quatione
for the twbulent boundaq @yer, including the effect of pressure gm,dient,
approximate corrections to the Reynolds analo~ (s~lar to those made

.
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for the ~nar boundary @er) to account for 2 have been prese@ed

in the literature, In general, these a~prmcimate corrections consist O:
substituting U, the velocity near the airfoil mrface (calculated by

.

means of the pressure distribution existing about the airfoil; see
apyend.ixB’),for u. in equation (54) end calculating the drag coefflclent

Cfx for the airfoil at the point in question. The Reynolds eaalo$y then

beccmes: .

fc . Cfx
(55)

36cccpyu = T

Modification of Reynolds enalcwtyfor _tudes of Pr other thsn
l#uxLty.-Slnce the Prandtl modulus for air is less than unity, the Reynolds
analogy must be modified to allow calculations for other magnitudes of
the Prandtl modulus. Several methods are available, all being based on
analyses of heat transfer to fluids in tubes:

(a) Von K&&n modification: By analyziM the heat transfer frcm a
tube to an enclosed fluid f’lowhg turbclentw, von K&&n obtained
(reference 23): .

fc :=! —
—. + (56)

(b) Boelter, MartinelM, and Jonassen modification: By extending
the von K&m&n analysis to include a more precise consideration
of the turbulent region, Boelter and others obtained for flow
in tubes only (reference 24):

(c)

dCf LliQ=
fc F=

=

[

(57)
3600C3%

n

Re cf
fjPr+log@ +5 Pr)+o .510*= y

Colburn, by empirical correlation of data on heat transfer from
flat plates, obtained.(reference 15):

fc ~P2/3 = Ci? -.

36mpY%n z- :“” (5~) -

.
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NumeriGal calculation of the von I&m&n and the
reveals that for a mnge of Pr between O.~ and 10,

2’7

Boelter method
the ccmplex expressions

involving Pr reduce to that of Colburn with fair &cmracy ~refere&e 24).
Thus, for fluids with 0.5 < Pr <10 ●the modified Reynolds analogy may be
rewritten as:

f. ~2/3 . Cfx
(59)

36mCp7u 2

When the equation for the 100al &mg coefficient along a flat plate
(referenoe 7, vol. II, p. 362) -

4.2@ = O.oa&lex
2

is substituted into equation (59), the expression

This emation is

—

“- (60)

fcx

-=
O.02@r+/3R~4” 2

becomes:

(61)

called “Colburnis“ turbulent heat-tmangfer equation
in the remainder of this report.

Heat balanoe.- If the velocity and temperature Ustributioti are
accurately known in the boundaqy layer, a heat balanoe will yield a
simple method of obtaining the tit thezmal conductanoe fran the airfoi 1.
As in the case of leminar flow

(19a)

The difficul@ in app~cation of this method lies in the neoessity
for aocurate knowledge of the velooity and temperature distributions.
The methods based on the Reynolds smalogy snd its modifications require
only a knowledge of the velooi~ gradient at the surface of the solid,
as - be seen from an inspection of equation (52).

Method of Frick and McCullough.- Utilizing the Reynolds analo~,

(%)y=o ‘(%OKT=) (62)
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Frick and McCullough obtain
.

()~=$’o ~ (63)

In order to apply this eqwtion to heat transfer fry ~irfoil surfaces,
the local shear TO is calculated by means of the von IQ?umanexpress ion for

the skin
boundary

where

in which

friction over
layer. Thus

a flat plate with a fully developed turbulent

puz
To=— (2

(64)

K = 2.557 loge (4.07,:) (65)

the mcunentumthiclmess e is calculated frc$nairfoil be- “
layer data. (See appendix B.) Substituting for To in efluation (63)

and rearrsmging yields .

c%
If one considers —

LJ
Rec ~

boundary @er, then

or

(66)

= ~ a characteristic length for the turbulent

qx ‘Pr (5&-To)~=~

f ‘RI?cx=—
%

(67)

.

.
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Letting5 PI? = 0.760, IYick and M@ulku@ Ob’kiI#

I’=x= O.760k
%1

( 6!2)
A

This characteristic length ~ should not be confused with the thickness

of the turbulent boq l.qyer. For a flat plate this latter quantity is
given by the expression (referenoe 7, vol. II, p. 362)

8 ———
- = 0.3~ex4*2
x (69)

frcm which it is seen that ~ is approximately proportional to x and

inve~eJy proportional to the boundary-@yer thichess.

In sumnary it may be stated that the treatint of turbulent-bo_-
layer heat tmnefer in the report of llt?ickand McCullough aasumes complete
equivalence of skin fh’ictionand heat transfer and uses the best method
lmown for the calculation of turbulent skin friction.

In order to ccmpare the available methods for calculating heat
transfer into turbulent boun~ ~ers, equation (68) is rewritten
for ready ccmptison with the fla%pkte equations to be derived in the
next section. The equation of Frick and McCullough beccmes:

fcx ()”R~OO 2
= O.02$XRexd” 2

360~p7u 0.0296(2

The Prandtl
Pr =1 was

modulus does not appear in equation (70) beuause a magnitude of
tacitly assumed In its derivation.

5As in the case of the laminar subQyer Pr = 0.72 is more correct
and is utilized in the calculation of &is report. .

61t should be kept in mind that equation (@) is based on equation (62).
Equation (62) does not Inolude ~, but in its derivation a Pr value of
unity is postulated. In order to obtain equation (63) from equation (62)
a Frandtl modulus of unity is utilized. In order to obtain equation (67)
from equation (63), equation (63) was wltiplied a tivided by - Thus,
as long aa proper values of v, Cp, and k arc utilized in equation (67),
substitution of the proper magnitude of I&, even thou@ differing ~om
unity, till yield a value of fcx which in reality is calculated for

I&= 1 and is therefore too low. In a later section the equatims of
Frick and McCuUou@ are modified to corr6ct approximately fcr magnitudes
of Pr not equal to unity.

—.
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Method.of Martinelli and others.– For the ease of turbulent flow
beyond the leading edge, the Colburn equation‘for turbu~nt heat transfer
from flat plates is uti~zed. Thus

%x -2/+%4.2= o.0296Pr
3600Cp7u

or expressing the properties of air apprwimatel.y by
in T the absolute taperature,

fcx ()= o.51.T0”3 .&F ‘-m
x“

When eqpations (70) @ (71) are,c cqared two points

(7U

a power function

(72)

of difference are
noted:

(1)

(2)

The term in parentheses in equation (70) represents an approximate
correction to the fIa.t-plate‘equatfon”for tie pressuzw giiidient
existing about the airfoil, in addition to the use of the velocity
near the airfoil surface in the flat-plate l%ynolds analogy.

Equation (70) does not involve 3?r,whereas equation (71) includes

Pr-2/3. Sinee the latter equation accotmts for the I&andtl modulus -
more accurately than the fomer, the equation of Frick and
McCullough, to-be more correct,-should‘be written

fc -2/+ex-o● 2
( J

RexO ● 2
= O.oE96Pr

3600CP7U 0.0296E

Ma@tudes of fcx calculated from the original Frick and
--)-
‘2/3. E~uationequation are thus too low by the f~”tor Pr

as:

(73) ●

Mccullo@

(73) is called
the “modified Frick and McCullough equation” in thl~ report.

Methods of Squire.- Squins (reference 16) presents two methods of
calculating fcx for an airfoil. The first m’hod employs the Reynolds

analogy as modified by von K&n&n. Thus

fcx
~“” .

— = “(74) *
3600CP7U

[
(Pr-l)+lo~l+ @r-1) 1:‘

~fx
where — is calculated at each point along the airfoil by utilizi~ the

2
.



von I&m&n axprefmionfor skin friotica along a flat plate with a fully tiveloped tm%u.lent
bowulxq layer, aa outlined in the mthod of Frick ml WMJloU@. !’

In order to cuqmre eqnatim (74)with those for flat pJates, It q be rewritten as: ~

~

({ )( )
.

fcx -0,2 1 %0”2 g
.= o.02g&iex — (75)

3&Kwp7u
]

o.c@q2 .~
1+5 (Pr-l)+lO&[l +&r-1)

!

The first tem in parentlmes corrects the Reynolds enalagy for tha flat plate for
mguitucles of W other thag unity. Nmb9riaally (for mall values of Pr) the tam Is

+3 The laat term In parentheses npresents the app~teapprc@mataly equal to I& .

correction to the flat-plate equation for the pmmuz% gradient exieting about the airfoil
and iB identical to that utiJlzed by Friclcand MMlough.

To Woata the probable effeot of presmu% gradients,Squire presents an altermtive
fonu of Reynolds _ by ammlng that the taqmature and velooi~ diwlzributiom are
exaotly similar

The emrgy

When it Is

(l%?= 1)

in the presence of moh gradient a.

equation for the bmmdaq ~er iEI

aammgd that the temperatzm

1

J
QxT.)ay =—

3@0Cp7

and veloci~ distributions are sMl&n’

T-% u
—=- -
TO-TO 1 U

(77)
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ox

where 8 is the mmentznn thiclmess

(:;(.-:) W, (see appendix B)

of the b~ ~er

and the prhes denote

with respect to x. l?rcm the momentwntheorem, however,

de To

()

u~e!3+2—n —-—
(3x puz Ue

so that

& has.been mentioned ~reviously, a

usual ReynoW analogy and for this

plot ‘f ?Cx against

(78)

and equals

differentiation

(79)

(&))

.-

x/c for the

latter modification indicating the effect

of a
$
~ shows l&rge deviations for an airfoil exsmple at ~ > 0.4.

Cf
Because ~ = $, equation (80) then directly indicates the

pu —
oaparison between the additional correotion for pressure gradient and
the usual Reynolds analogy for a fIA plate.

Also since the mamentum theora (equation (79)) end the energy
balance are equally valid for lsminar and turlulent boundary layers,
eq.uxction(80) applies as well to the laminar case, and the term to the
right of the minus sign affords en indication of the relative effeet of
pressuz% gradient on the heat tzwmf er into lsminar and turbulent
bounda~ @ers.

In order to compare equation (80) with the turbu:ent equation of
Frick and McCullough and the flat-plate relations, it” may be written in
the f omn



I .

Sul!mlaryof lwlthde .- The final.eqmtione for tha point unit themal conduotanoe for g

turbulent boundary I.eyere,are aa follows: ●

P

Hick and ~kCullO@ (meticd I) 6
w

rc

()4.2 %0”2
= o*02$mex

360mp7u 0.0296{2

Modified l&lck and MMlough (mtbod II)

‘4

Mertlnilu and Othelw :

f Cx
= o.029mt#3””%t?-2/3

3@cp7u

(70)

(73)

(71)

Squire (method I)

fcx
= o.029a.#2

({

1 %0”2

360~FJ
(m

1+; (Pr-
[

%’r.-l)1)+1% 1+;
1})( )

0.0296C2

I

u
w
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Squire (method II)
.

The bracketed terms in these equations direatly indicate
made for pressuxw gradient and variations in the Prandtl

Ccmptison of equations (70),(73),(71),(75)s~_. .
that: .

the corrections
modulus.

(81) reveals

(1) Equations (73), (71), and (75) aocount for variations of Pr from
unity, but equations (7o) and (81) do not.

——

(2) All five equatiom aocount approximately for the pressure gradient
existing along the airfoil by substituting the velocity near the airfoil
surface U for u= in the flat+plate relations. In tiditlon, equations (70),
(73)> ~ (75) tie further appr~~te correctio~ for the ~~iation of
point &rag coefficient along the airfoil sm”ace. Finally, equation (81)
includes a further corzwctive temn which results Rrcnuthe calculation of
a heat balance on the bounda~ ~er. The last equation probably over- .

emphasizes the role of the pressure gradient.

(3) ~~tfm (70) W (71) are identical for heat tranefer from a
flat plate and have been uhecked experimentally for this case. Equation (75) “
is practicably identical to equations (71) and (73) for heat tmnsfer
over a flat plate, and basically probably accounts for variations of Pr
from unity more precisely than equations (71) and (73) which
an empirical correlation of experiment@ data.

(4) Although equations (70) and (71) are identical when

results frcm these equatione are strictly applicable only to
pr.1.

are based on

ap

z
~ o, the

fluids with

(5) All.equatiom am identical for heat transfer from a flat plate
to a fluid with Pr = 1.

DISCUSSION OF Ntll@RICAL~

Methods Eh@yed in Iamlnar Re@ne

for calculating theIn order to ccmpem the v-cue methods described
laminar point unit thezmal conductance over wings, an airfoil shape was
selected whose aerodynamic characteristics are very accurately known.

-.

.
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Such a section, for which the pressure acd velocity distribution has been
calculated theoretically and thoroughly tested experimentally, is a
Joukowski profile whose characteristics are shown in figure 2. This
particular profile is called “aerofoil An by Bairstow and numerous tables
of data concerning it will be found in reference 25.

For purposes of calculation, an airfoil with a chord of 7.78 feet
was chosen which was to be maintained at a constant t~perature of 70°F,
while moving with an angle of attack of 1.5°at a velocity of 253 feet
per second through air at a uniform temperature of 30°F. The values of
fcx ccxnputedby the different methods for this example are shown

graphically in figure 3.

It is seen that all.of the methods discuseed give anawers that are in
fairly good agreement. The reasons for differences are readily observed
by inspection of table I in which the various terms of equations (2s), (28),
(33)sand (39)arepresented.For example Allen and Lookts values are
obviously too low because the calculations were based on a Pr value of’1. -
The values calculated by equations (33) and (39) are in very good agreement,
but sane of this agreement is fortuitous, as table I reveals. Thus, the

ap
individual corrections of Squire for —

ax
and Pr are of such a magnitude

that their ccmbined effect yields results which are W very close agreement ‘“-
with those of Msrtinelli and others; calculations on a different airfoil,
however, may give results which are considerably more at variance.

.
If, as is often the case in practice, an approximate value of the

external conductance, or a value indicating an order of magnitude, is
desired, then the method of Martinelli is the simplest and most rapid and
is usually of sufficient accuracy; in other cases the accuracy of the
answer desired would determine the choice of method. It should again be
remarked in this connection, however, that the example cited for purposes
of comparison does not represent an extreme case of pressure gradient
around an airfoil and that the deviatio~ among the methods due to the
effect of the pressure gradient on the heat transfer might be considerably
greater for other types of shapee, such as thick wings, fuselages, and
so forth.

Methoda Employed in

In order to compare the varioua
conductance along an airfoil for the

the Turbulent Regime

methods for calculating the unity
turbulent boundary Ever, the wimz

.

profile utilized-by lRrickand McCullough (NACA 65,2-01%) &s &elected ;or
calculation. The airfoil has a chord of 7 feet and was assumed to be
moving with a velocity of 206 feet per second. The average temperature
of the air in the’turbulent boundary layer was taken as kOOF.

The five methods of calculation previously discussed .were applied to
the airfoil, assuming h turbulent boundary layer to exist frcm x = O. The
results are plotted in figure k. It is noted that the five methods yield
results, which, as in the case of the laminar-boundary-layer calculations,
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are in fair agreement. Certain differences are apparent, however, which
merit l-her discussion. .

.In order to faci~tate comparison of the.various methods, the pertinent
teme of equations (70), (73), (71),(75), and (~) are presented in table ~.
It is apparent fram this table that Frick and l&Cu310ugh’s original
equation is too low because of the tacit supposition that l% = L Inclusion -” –
of the. approximate correction for Pr In ll%iok and McCullough?s methods
raises the curve about 20 pert ent. The remaining methoti check closely —
up to : = O.J+. At this point Squire1s hea&balanoe method diverges

rapidly fran the other curves. Experimental evidence is not available to
cheek this phenomenon, but it is probable that the heatiala.nce method

‘a$proposed by Sq,ulre overemphasizes the @ortance of ~.

*

The rather close caparison, of the method proposed by Martinelli and
others with the mom refined techniques of the other authors is partly
fortultoub, sinoe for a~~oils wtth abrupt pressurw gradAents the results
fran the various methods may be considerably more at variance.

Unit Conductance at the Stagnation Point

Allen and Iaok and also Frick and McCullough suggest the use of the
appraximatlon .

(82)

for computing the value of the point conductance at the_sta@ation point,
where r is the radius of curvature of the leading edge. This equation
considers the airfoil leading edge to be~elliptical in fozm. The equation
of the point conductance at the stagnation point,then becomes

,— __
fcd

Nuetag = ~ =

where d is twice the radiue of

At the stagnation point the

Lu=d2.42 —=2.42= (83) - ‘-
v

curvature.

ewations of

&p’ = o.123d2
ReD

Squire reduce to the form

*
—

(84)

—
.-
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Sinoe

81
where — is found by means of tie equation

62

51
The term ~ aoc ounts both for variations in

pressure gradient about the stqgmtion point.

37

(36)

(86)

.-

Pr frcanunity and for the

At Pr = 0.720 equation”

‘Ustag =0.95 ~

-.—.

(87)

The equation proposed by Martinelli for the stagnatio-point oonductano e
is that derived in the theoretical analysis of heat tmnefer frun the
fozward end of a cylinder, namely

l?u8tag=

or at Pr = 0.720

1.14R””+R#” ~ (23)

(88)

Ccqarison of equations (83),(m), and (88)immediately indicates
the degree of correspondence between eaoh of the three methods and the
stagnation-point conductanoe for the leading edge of a cylinder. In the
method of Martinelli, the flow at the leading edge of the airfoil is
initially postulated to be exactly that of the flow at the forward portion
of a cylinder and henoe the airfoil stagna.tion=pointconductam e corresponds
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exaotly with that of the cylincler. Apart frcm this nethod It is seen that
Squire’s method gives vezy much better agreement wtth data obtained at . ●

the stagnation point of a cylinder (reference 7, ch. IV) than does the
method of Allen and Look.

If the cylinde&stagnatio-point value

vezy close to the aotual leadi~dge value

made by Allen and Look in setti~ the ratio

illustrated by the wide discrepancy between

—

Cx ie considered as beingof r

for the airfoil, then the error

~ equal to unity is well

their value-of the point ~
conductance at the stagnation point with tliat obtained from analysis of
heat tm.nsfer at the stagnation point where the pressure gradient is
extreme. This discrepancy resultlng from use of the Allen and Iaok method
is an indication of the superiority of Squire’s method when applied over
the entire airfoil.

If inAllenand Lookts method the leading edge
considered to be cylindrical instead of elliptical,
to

O.289rct58~g2=?
a

rather than equations (82) and (83).

When the expressions for the point oond.~ctance

of the airfoil is
their equations reduce

(a)

— .—
(90)

at the stagnation
point are app~ed to the Joukowski profile, which was used as an exemyle
In ocqarlng the me+hods for the lsminar re@me, there is obtained:

.
fCx

stag
Method

Martlnell.i

Allen and Look

Allen and Wok

Sqyire

( ellipti~al)

(cylindrfoal)

(Btu/(&)(sq ft)(%) )

log

264

218

lol~

.

.

.
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Propeller Calculation

The problem or heating prope~ers to prevent the fomation of ice
is becoming of increasing importance in the aircraft industqy, and some
method of calculating the point unit thezmd conductancee on the outer surfsce
of the propeller would therefore be desirable.

The flow conditions around a propeller are complex, and the theory is
mther ~erfectly developed so that an exact emalysis of the problem in
a manner similar to that employed for en airfoil section in this report
does not at present seem p~ticable.

It is well known, huwever, that a propeller may be considered as
being made up of a series of airfoil elements, end a rough approxhnation
to the variation of the point conductance radially and chofiwise might
therefore be obtained by calculating the ohordtise distribution by any of
the methods described herein for em airfoil shape, for each of these elements.
Such a procedure wss adopted here by applying Martinellits equation for the
lamimvr and turbulent cases to four different sections of a propeller shape
whose charaoterlstics are described by Bairstow (reference 25, p. 664).

Because experimental data on the pressure distribution around the
blade elements of the propeller were laoldng, the approximate equation of
Seibert (reference 26)

——

U.11
(
lt cm 4 Cos a‘)

(91) “

+ for “upper” surface of

- for “lower” surface of

was used to calculate the veloci@ at”the edge

airfoil

airfoil

of the b~ layer.

The propeller in question was assumed to have a radius of 5 feet, to

--

be rotating at 2000 rpm, and to be maintained at a surface temperature of
.70CF, in air at 30° F. The lift coefficients for each of the sections
were obtained from reference 2’5(p. 664) in which tables of data are
reproduced whith were taken at the National Physical Labo~tory. It was
assumed that the singleof incidence of each of the blade elements was
the same emd equal to &. A plot of the results end a diagram of the
propeller selected for the example are given in figures 5 end 6, respectively.

In calculating the heat loss frcauthe surface of the propeller, two
cases were postulated: (1) The fluw ranains leminar for the entire chord
of the airfoil section for both the upper and lower surfaces, and (2) the
flow is turbulent over the entire chord for the upper surface and Luninar
for the lower surface. = each of these cases an average fc for each

oection was found by graphically inte~ting under the curves of figure 5
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and the total heat 10SS was computed by adding the heat dissipation
from each of the four sections. In the turbulent aase this total heat
loss was found to be 20,487 Btu per hour, whereae in the laminar case a
value of 5772 Btu per hour was obtained.

—
.

.

Vezy little is known about the looation of the trans~tion point on
propeller shapes, but it is probable that the flow is pot completely
lemlnar exoept possibly at positions close to the hub. Until further
information is obtained regarding the qature of the flow shout a propeller,
it is probably safest to assume the turbulent value for the heat loss aa a
design est&ate.

Department of Mechanical Engineering
University of California

Berkeley, Calif., September

.



The @mw?al energy equation for an Ideal gas w be written (mferenm 7, vol. 11,”
P* @)

(92)

where D Micetes a total. derivative and O is the “dissipation f’umtfon .“

For the case of tvo-dimnsicmal. flow expression (92) reduces to the fmm

lkuier the usual postulates of buundary-leyer theory the terms N? @ @ ~ set equal

‘h 2

(F)

ar 3=2

to zero; when P Is subetituked for @

(94)

If ~ is”t& t~clmess of the i%?msa.1.bou?udsry layer, on integratingeq~tion (94) frmn
Y .otoy=5E,

E-
ul
w



aim3 $ vanishes at y = ~, Which Is the cuter edge of w thenml @cr. How

and

(96)

(9’7)

(98)

+=
10

Eenoe making use of contiIndQ there is obtained
??.

F
U
w

.

,
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H%aT aT )f %f%”-% +pv$dY=& pTdy
o

where T1 is the temperature at the outside of the layer. Whenequation (100) is substituted in

equation (~), the folluwing equation for the inte@?ated energy balanoe on the thezmal boundary
~er is obtained: t

(101)

The second aforementioned geneml. integral relation is the well-known von =
%umentumequation>”

,’

If steady flow and an inccmrpressible fhrid are postulated and the dissipation term is
neglected, these two equations reduce res~ctively to

*
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(103)

(104)

When a fourth-power polynomial is postulated to represent the velooiW
distribution in the .boundaq ~er, that is

;=
ay+by2+cy3+dy4 (105)

withthebmndsry Co~tions

aty=~:

therefore

u ,=U

‘1,1. o

V=o

%Ulapuu’
v=——= -—

& (3Vax

Pohlhausenss equession (referenoe n) is

$=(’+ 2’)(:) +(-’+$ ’)(

v

obtained

( 106)

(107)
.



NACA TN No. 1453 45

where
.

.

.

L 82 dU= —.
vd8

(108)

Substitution of the drag at the wall froLu this pol.ynanial into the
momentumequation yields as an equation for h

(log)

where g(h) and h(h) are lmmwntabulated ftmctions of the argument
(refennoe 7, vol I, p. 16o), end primes denote differentiation with

respect to x. At the point of stagnation h = 7.052 and X? = 34.055;

with these initial conditicrns equation (109) cenbe integrated either
numerically or by the method of isoclines. If the t~e~ture distribution
is assumed tobe of the same general formas that of velocity, namely

~= ay+by2+ay3+@4
!r~

(no)

with the boa conditions

sty= %’

T=T1

%=0
&z=o
+*

aty=O:

u= o

--

-.

.

-r= 0

therefore

( ill)



—..

there is obtaiti

(lI.’)

If the “kinatio tempemitura rise” Is set eqpal to zero, then the temperature at the edge of

the boundary -layer isthessmaas that lnthefhe streem, thatis T1= l&, *

(ilk)

Substituting equtioni (107) and (~2) d i*Q’8t@j

It is well known tht 8s a gocd apym.lmstion (reference 7)

(117)

I
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BO that we nlqy

and let

define two ftmotions

-1/3F1(x,~) ~ (0.866+ o.072A)m

+ (-0.479 + o.l19L)# + (0.194 - 0. 032X) Pr+/3 (118)

-1/3F2(X,Pr) E (1 + 0.083k)Pr + (4.~oo + o.laA)Pr-l

i- (0.200 - o.033x)Pr--4/3 (llg)

q= F1-F2

Then equation (113) reduces to

Since all tempem.tures
datum,

()+(U* )=+ $ ~ (120)
a Y

.

aremeasuredwiththesurface temperature es a

*CX = Ycp

The procedure for calculating the
would then be:

(1)

(2)

(3)

(4)

(5)

(6)

(la)~ (u~) ~ 3600
a%

point conductance in smy given case

either ~phica13y or analytically. .

.

Ccmpute the ohordwise distribution of A by PohlJmusen~s method
m the experimental pressure distribution. (See equation (57a).)

Find 5 by means of the relation L
82- ~ Ure

Find ~ by means of the relation 2. pr-1/3.
a

Ccmpute the functions F1 and F2 sad hence g.

Substitute in equation (121) and evaluate the derivative graphioaXly.



It ia seen that this prcce+lure pezmits extensia to cesea in which cconpressibjJi@ ti

dissipation erfects are ta be c~iti~a. when o = ~ md
~

= - puut m substituted.

in the gemral energy equation for steady flou,

. ,
.,

(124)

I



f

The polynomialsof equatlona (lq) and (112)petit the evd.udion of the inte@?als

%[(%:”’)vl+(g-.’-~+$)v2+

( )] ()_m12e#F2+5#21 4k*ya
+ @3

(w)

(l’a)

reqxmtlvely, eqwrtion

(
U ~Flt + %rF1

)

(w)
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.

f

[ (. Cpp u’(1 + RT1) ~F1 + tit u, U’T1’ ~ U’—.. —
Cx R ml ml T1 )+ ‘“ -

+U(~’Fl + ~F1’)-~12 (%?2 + ;’2’ )] + % (130)
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AJ%!ENDIXB

DISCUSSION OF CERTKHi BOUNDAIRf-_ CONUHZ’S

h the development of boundary-layer theoqy, certain basic potitulates
are tacitly made which, because they are not cleaxly stated, msy cause
the engineer who is not primariJy an aer@msnlcist considemble difficulty.
The purpose of this appendix M to discuss several OS these points somewhat
more thorou~r than Is done in the usual references on aemdynemics.

Them are two general methods of ana~ziw b~-lsyer prc%leti:

(a) The solution of the boundaq-@yer differential equations
(equation (132)).

(b)The solution of the boundary-~er momantw equation
(equation (lOh) ).

The firstpartof the appmd.ix deals with method (a); the second part
deals with method (b).

Boundaqy-Iayer Dffferential Equations

The incompressible-flow bo~-lwer dlf~erential equatlo~ are
derived from
yostula’tms :

(a) The

(b) The
the velocity

t-bgeneral h@rodynemi~eq~tions tith the f;lhwing .

flow pattern about the ob~ect is tw~enslonal.

thickness of the region next to tho solid surface, in which
gzpdient is large, is small canpared with the other linear

dimensions of the ob~ect.

(c) The flow is hccmqressible.

(d) There is no separation of the flow from the solid ob~ect. -

(e) The fluid in contact with the solid rnn-;acehas no
relative to that surface.

Reference 7 (vol. II? p. 61o) presents a derivation of
~er equations, for curved surfaces, on the basis of these
The boundaq-layer equationn sre: (See also fig. 1.)

ve100ity

the bou@a~-
postulates.
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22 A+ *=0
axay

(131)

*

The followlng fvyther -postulatesare usualJy made in solving
equation (131): —.

(e) Velocity u is not a funotion of the.

JY)(f) bp
~a~

is ne@Agibly small even alox a curved surfaoe, so

that the pressure is postulated to be invazztable in the direction nomal
to the surfaoe. .

The equations then reduce to:
.

.

(132)

By making postuhti (f), all problems of iwcMiimensional boundary-
layer theozy beoome probhns of flow along a plane sru?faoe (flat plate)

ap varies in scme givenalonG which the pressure ~ent ~ manner.

The b~ conditions imposed on the boundary-leyer eqmtions,
ap

remss of the variation of ~ are

.



NMAmI?o. 1453 33

at y =-O

{

u= o

anax=al V=o

aty=co r u= u
(133)

..——

The extension of the solution to Y = oo assmm that the whole fluld
field is in viscous moticm. With ~hese boundaq c&ditions, the vei~ity
profile at any x will have the form shown in figure 8.

Sinoeat y=oa, u=U,
%=0’

equations far frcm the plate beccmm:

Integration of equation (134) yields Bernoulli’s eqwation.

bound&qy-~er

(134)

Sinoe a
s

does not vw with y, the b~-lqyer equatione

beocmle:

U&+vau=u
ax ay

u av
il-x+~

( 135)

As was ~revious3y mentioned, these equations are strictly app~cable
to a flat plate only. Approximate solutions of these ,equationsaver curved
shapes are obtained by postulating various vtiattons of U with x and

“substituti~ this resulti~ foml or u ~u into the foregoing equations.
ax

Only certain special forms of U = f(=) cen be lmmdled math-tfc-o

The following table was ccmpiled frcm the solutions of the boundaq-
Iayer equations presented in reference 7, and reveals how flow about
various objects is identified with certain varktfons of U along a plane

surface.



u .~aJlMJ ax “Equivalent-flow system”
-;ax

constant I o I Flow along flat plate

plx pl% Flow near stagnation
point of cylinder

g ~2
-—

x
Flow in conrerging

X3 channel

Flat plate
.-

CX% ~~ #2&l %; Stagnation point
m = -1 Converging channel

y C* y cam+-J
Amy curved shape if series

is known frcm experimental
m=l m=l data

A dia#vam of the velocity distribution near the stagnation point of
a cylinder, obtained from a solution of the boundary-@er equations, is

—

shown in figure 9. A dlscrepnoy with the actual physical system is
immediately apparent. Figure 9 shows the velocity far fran the ob~ect .
increasing linearly with x, whereas obviously in the physical system
the velocity far frm the surfaoe remains constant.

.

.

The flow pattern about the actual physical systam is shown in
figure 10. This figure reveals that tho vel~ity in the physical system,
at any fixed value of x, inoreases as y increases, reaches a maximum,
and then decreases to an as~tOtiG magnitudo L& as y + ~. Comparison

of the velooity distribution about a cylinder obtained from potential
theory (zero viscosity) with the experimental points would show a gmd
check until the surface of the cy~nder was approached closely; the
potential =olutions would then become greatly in error. Conversely the
solution of the boundary-@er equations would show good agreement with
the data for magnitudes Of y from zero to aboub the point of maximum
velooity; beyond this point tm boundary-wer solution would deviate
greatly from the data.

BecauQe of the deviation of the boun--l.ayer solution from experimental
results for flow arcmnd curved o%~ects, a Mmit mwt be placed on the region -
in which the boundary-@yer solution is a~plicable. This limit is called
the thickness of the boundary “layer. In analyzing boundary-layer problems
aerodynamicists as a rule conoern themselves with what occurs within this .

boundary lqer and usually neglect completely the flow outside of this
boundary l~er.
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It is -evident
boundaq layer 5
are:

(a) The point
intersect

(b) The point
of u

(c) The point

that a unique df3finitionof
ie ddfficult to”establish.

79 where the boundary layer and potential solutions

Ys where U = 0.99U, or q other arbitrazy fraction

at

If

of

the thiclmess of the
Several possible definitions

Y
of the total

Definition (c) of b
whhh U-=-@ U.

at which the total pressure
pressure in the free’stream

(for incompressible flow) is

reaches a fraction F

equivalent to the point y

(d) A characteristic length, called the displ.aoementthicbess
51 may be defined, ao that

pea *

J JLUdy-(ubl)= Udy (136)
o \

.
the flow along the body obeyed the boundary-~er equation, the rate

flow of fluid aorose ~ x

sCe

quantity U dy becauae of
o

of the object. The difference
istic length 51. The length
itself, but is related to it.

1
m

would be u dy. This is less than the
o

the retarchtion of the flow near the surface

is called U61, thus defining the characte~
51 is not the boundazy-lsyer thiclmess, in

The exact definition of boundsry-@yer thickness adopted should not
influence the final results of a bounde.qy-la.yeranalysis as low as the
definition is utilized in a consistent manner, since the analytical solutions
of the boq—layer equations never involve the boundaq-lqyer thiclmess
directly.

Fran figure 10 it is evident that in the physical system the velocity
outside the bounda~ lzqyervaries with y. In aerodynamic analysis,
however, the velocity U is called the velocfty at the edge of the
boundaxy layer. The velocity “U is defined by

u dU 1 &n
—=- ——,
dx pdx ‘(134a)
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&=

2
- J=p + Constent

P

~2
P+% = constant

Thus U may be od.culated from the pressure distribution around a curved
obJect. It is defined by equation (134a) end is the velocity just outside
the boundmy @er only in the oense that for any fixed value of x, at
one point y outside the boundary layer, the velocity U will exist. The
oorrect value for the velccity at the edge of the boundary ~er will, of
course, depend upon tho definition of the boundai~ layer adopted. utilizing
U indiscriminately for the velocity at the euo of the boundary @yer in
conjunction with different definitions of the boundary-Qyer thickness will
lead to erroneow results.

It has been shownthat the boundary-~er solution is not applicable
outside the boundazy layer. If now it is postulated that the flow outside
the boundaq @yer does not affect the velcnitiJirmide the boundary layer,
the leminazQoundaq-lqer equations - be applied to a system even
though the flow outside the bounda~ @yer iu turbulent, as long as the
flow within the boundary layer remains lenxhm”. once the flow within the
boundazy layer beccuneseven
are no longer applicable.

partly turbulent, the boundery-layer

Maentum Equations

By the considerations of the flow within the boundary layer

equationo

it may

.

be established that a certain thiclmess 6 exists inwhiah the boundary–
layer equations are applicable. If it is ~ln%her postulated that:
(a) the exact foxznof the velocity distribution outside the boundary layer
is of no importance whatsoever in detemini~ the behavior inside the

~boundary layer and (b) that a velocity U calculated frcm P + p = Constant

exists at the edge of the bounda~ ~e~*, certain simplified equations may
be written which allow the approximate analysis of the velocl~ distribution
within the boundaq @cr.

Since the two postulates mentioned are
momentumequations are only approximations.
that the ayproxhation is fairly good. The
flow ( oee appendix A) is

not exactly true, the
Jhcpf3i5mental results indicate
manentum equation for steady —
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It should be particularly noted thqt integrations extend only to 8 instead
of = as waa the ease for the boundary-~er equations. Thus the b~-
layer thickness is’ of primaq importance in the momentumequations, althmigh
its definition was really not essential in the analytical solution of the
boundary-layer eqmtions.

Ths manentum equations are

as a function of ~. A typical

solved by expressing the velocity ratio ~

expression for ~ (appendix A) is
u

Y Y“
Since only the re#on between ~ = O and ~ = 1 is being considered,

the following approximate b~ c ondltions ~ be @osed on ~
u

au ~—=
Y

(See reference 7, vol. I, p. 156). These Mundary conditions, which are
not exactly true in the physical system, allow, however, the evaluation
of the constants a, b, c, d, end so forth. Obvloudy the velocity dis-

tribution is only applicable between ~ = O and ~ = 1. Outside ~ .”1

thereis no relation between the polyncznial. expressing ~ and the

experimental velocity distribution.

Having ; I= ~ ~tion of & the momentumequation msy be solved

for the shear at the wall, the boundary-~er thickness 15, and the
displacement thiclmess 81. In addition, for purposes of analysis the

momentum thiclmess defined by

J
6

eu2 = (u - U)u dy
o

(138)

is often calculated by the momentumequation methad. .-
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The advantages of the mcmwxtuqmethd are ths relative simplicity of
aocountlng for variable pressure ~dients as a function of x snd the
fact that it mqy be applied approximately to both lazninarand turbulent

.

bounda~ layers.

.

.
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SOME REMARKSON THE SJMXARITY OF WLCWITY AND ‘~

DISTK5UTIOm IN ~ PRESENCE OF A PRIESURE GRADIENT

was discussed in the section of the text IAMCNARREGIME.Method
of Squire, inspection of the boq-layer equations, for both-laminar
and turbulent b~ @ers, reveals that within the b~ layer the
pressure gradient will probably cause cdy seco- Ufferences in the
temperature disttibuticm as cmpred with & velocity distribution.
This conelusion is even more important for the region outside the.bounda~
layer. As shown in figure 7 and as discussed in appendix B, the soluticm
of the bouni@y-1.ayer equations, even in the presente of a pr6ssure
gratient, yields values of U and T whioh asymptotically approach
certain magnitudes of U end T which are supposed to exist far from
the soll&fluid interface.

PhgsicalJy, however, in the presence of a pressure gratient the
aotual velocIty outside of the boundsry ~er does not approach the vebc ity
U asym@oticalJy, but (in a region of negative pressure gradient) reaches
a msxtmum and then decreases to a magpitude of the free-stream velocity ~.
The tempezzature distribution, however, (neglecti~ frictional heating)
approaches T@ asymptotically.

It is apparent &erefore that, at least outside the boundsry layer,
the pressure ~ent affects the velocity distribution much more tbn
it affects the %mpenx3ture distribtrtion.
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TABQ?J I

CAI.CUIATIOIVSFOR IAMINARBCUNTARYIAYER FOR JOUKO~_ AIRFOIZ

[G = i’.V3ft, % = 253ft/see,7 =- 0.078lb/f@,

y = 0.24 Btu/(lb)(%), Pr = 0.~2, a = 1.5°]

x/c
u Rex o&2 [A] ‘1/2 [B] ‘1/2 p’#/3

()

% 1
u—w

-X K2 Fr
(1) (2)

0.06 l.no 76.4X 104 :.% x 10-4 l.lfl 1.059 1.242 1.22
.10 1.276 131.5 1.lZL 1.050 1:242 1.24
.16 1.276 209 2.22 1.070 1.012 1.242 :.22
.2Q 1.272 263 1:99 1.042 1.012
.28

1.242 .
1.264 366 1.68 1.003 .997 1.242 1.25

.36 1.251 466 1.49

.44
.968 .980 1.242 1.26

1.229 559 1.37 :910 .959 1.242 1.28
.52 1.21_8 655 1.26 .835 .932 - 1.242 1.30
.60 1.198 71A 1.18 .845 .835- 1.242 1.32
:72 1.162 860 1.14 .770 .EU8 1.242 1.36

f ~= as dete~ne d by - —.

Allen end Look Frlck end M&rtlnel.li . squire
x/c (equa~$ (23)) McCUllou@I “endothers (ew=tlm (39))

(equation (28)) (em=tion (33)).

0.06 9.8 12.2 10.2 10.6
.10 6.8 8.50 7.59 - 7.95
.16 5.16 6.42 5.98 6.05
.20 4.’51 5.60 5.38 5.4
.28 3.65 p: ;.% h.J
.36 3.08
.44

3.96
2.60 3:24 3:57 ‘“ 3.51

;g 2.35 2.94 3.27 “ &J
2.04 2.53 3.00 -

.72 1.74 P.16 2.82 2:61
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()-’””
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—
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.
.,.

3 Calculations baaed on F?r value of 1. .
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1

38.5 47.8 43.6 E::
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/

Figure 1.- Typical boundary layer.

Figure 2.- Joukowski profileused in comparison of methods for
laminar regime.

[

$/a = (COSe + 0.04) 1 + 0.83 1(COSe + 0.04)2 + (sine + 0.05)2

[

~/a= (sin6+ 0.05) 1 - 0.83

1(cos e + 0.04)2 + (sine + 0.05)2
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Figure 3.- Comparison of methods for calculating point unit thermal

conductance in laminar regime for an airfoil section (Joukowskl profile),
True airspeed, 253 feet per second; air temperature, 30° F; wing
temperature, 7@ F; angle of attack, 1.5°; wing chorli, 7.78 feet.
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Figure 4.- Comparison of methods for calculating point unit thermal
conductance in turbulent regime for airfoil section (NACA 65,2-016).
True airspeed, 206 feet per second; air temperature, 300 F;
wing Mmperature, 7@ F; lift coefficient, O.55; wing chord, 7.0 feet.
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r = 0.412 R, Chord = 0.164 R, C. = 1.172
L1

r = 0.602 R, Chord = 0.602 R, CL= 1.141

Section E

r = 0.75 R, Chord = 0.137 R, CL= 1.061

m

Section F- ““-

r = c).88 R, chord = 0.137 R, CL= 0.961

c“ DEF
~

—-. — — ——- . ——— -—— -—

Figure 6.- Diagram of propeller section used in illustrative
example. Angle of attack, 6°.
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Figure 7.- Velocity and temperature distributions in presence of

pressure gradient.
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Figure 8.- Velocity profile at any x.
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1

Figure9.- Diagram ofvelocitydistributionnear stagnation
p~int of cylinder obtained from solution of boundary-layer
equation.
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Figure 10. - Flow patternaboutactualphysicalsystem.
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